소품집

[Kaggle] Titanic 시각화 및 prediction (2) 본문

AI

[Kaggle] Titanic 시각화 및 prediction (2)

sodayeong 2020. 8. 27. 16:20
728x90

오늘은 kaggle 타이타닉 데이터 셋을 이용해 시각화와 예측을 해봤다.

 

 

getwd()
setwd('/Users/dayeong/Desktop/reserch/data')

# Kaggle 2DAY
# https://www.kaggle.com/mrisdal/exploring-survival-on-the-titanic


# Load packages
library(ggplot2)
library(ggthemes)
library(scales)
library(dplyr)
library(mice)
library(randomForest) # classification model 

##
# Load Data
train <- read.csv('train.csv', stringsAsFactors = F)
test <- read.csv('test.csv', stringsAsFactors = F)

full <- bind_rows(train, test) # train set과 test set 병합 

# check Data
str(full) # 12개의 변수와 1309개의 데이터가 존재.

##
# Feature Engineering
# 탑승객 풀 네임 중, '성'만 가져오자. 
full$Title <- gsub('(.*,)|(\\..*)', '', full$Name)
table(full$Sex, full$Title) # Show title counts by sex

# Titles with very low cell counts to be combined to 'rare' level
rare_title <- c('Dona', 'Lady', 'the Countess', 'Capt', 'Col', 'Don',
                'Dr','Major','Rev', 'Sir', 'jonkheer')

# Also regression mlle. ms. and mme accordingly
full$Title[full$Title == 'Mlle'] <- 'Miss' 
full$Title[full$Title == 'Ms'] <- 'Miss'
full$Title[full$Title == 'Mme']<- 'Mrs' 
full$Title[full$Title %in% rare_title]<- 'Rare Title'

# Create a family size variable including the passenger themselves
full$Fsize <- full$SibSp + full$Parch + 1

# Create a family variable 
full$Family <- paste(full$Surname, full$Fsize, sep='_')

# Use ggplot2 to visualize the relatinship between family size & survival
# 가족 규모 생존 단위 시각화 
ggplot(data=full[1:891,], aes(x=Fsize, fill=factor(Survived))) + 
  geom_bar(stat='count', position = 'dodge')

# Discretized famlily size
# 신원이 확인되지 않은 가족
full$FsizeD[full$Fsize==1] <- 'singleton'
full$FsizeD[full$Fsize < 5 & full$Fsize >1 ] <- 'small'
full$FsizeD[full$Fsize > 4] <- 'large'

# Mosaic plot 
mosaicplot(table(full$FsizeD, full$Survived), main = 'Famliy Size by Survival', shade =T)

# This variable apperars to have a lot of missing values
full$Cabin[1:28]

# The first character is the deck. For example
strsplit(full$Cabin[2],NULL)[[1]]

# Create a Deck variable. Get passenger deck A-F:
full$Deck <- factor(sapply(full$Cabin, function(x) strsplit(x, NULL)[[1]][1]))

# Missingness
# Sensible value imputation 
# passnegers 62 and 830 are missing Embarkment
full[c(62,830), 'Embarked']
cat(paste('We will infer their values for **embarkment** based on present data that we can imagine may be relevant: **passenger class** and **fare**. We see that they paid<b> $', 
          full[c(62, 830), 'Fare'][[1]][1], '</b>and<b> $', full[c(62, 830), 'Fare'][[1]][2], 
          '</b>respectively and their classes are<b>', full[c(62, 830), 'Pclass'][[1]][1], 
          '</b>and<b>', full[c(62, 830), 'Pclass'][[1]][2], '</b>. So from where did they embark?'))

# Get rid of our missing passenger IDs
embark_fare <- full %>% filter(PassengerId!=62 & PassengerId!=830)

# 승선 class별 요금
# 일등석 승객의 중간 요금은 탑승 부족 승객이 지불한 80 달러와 일치되는 것을 확인할 수 있다. 
# NA 값을 'C'로 대체할 수 있겠다.
ggplot(data = embark_fare, aes(x=Embarked, y=Fare, fill=factor(Pclass)))+
  geom_boxplot() +
  geom_hline(aes(yintercept=80),colour='red', linetype='dashed', lwd=2) +
  scale_y_continuous(labels=dollar_format()) +
  theme_few()

# Since their fare was $80 for 1st class, they most likely embarked from 'C' 
full$Embarked[c(62,830)] <- 'C'

# show row 1044
full[1044,]

ggplot(full[full$Pclass=='3' & full$Embarked == 'S', ], aes(x=Fare)) +
  geom_density(fill='#99d6ff') +
  geom_vline(aes(xintercept=median(Fare, na.rm = T)), colour='red', lwd=1, linetype='dashed') +
  scale_x_continuous(labels=dollar_format()) + 
  theme_few()


# 예측 전가

# show number of missing age values
sum(is.na(full$Age))

# 나이를 예측하기 위해서는 rpart를 사용할 수 있지만, mice로 예측하자.  (?) 뭔 말인지 이해 안감.#
# Make variables factors into factors
factor_vars <- c('PassengerId','Pclass','Sex','Embarked',
                 'Title','Surname','Family','FsizeD')

full[factor_vars] <- lapply(full[factor_vars], function(x) as.factor(x))


# Perform mice imputaion excluding certatin less-than-useful variable
# 사용량이 적은 타겟을 제거하고, 변수 생성.
# rf 모델을 사용해, 이름 na 값에 대하여 랜덤으로 값을 부여함. 
mice_mod <- mice(full[, !names(full) %in% c('PassengerId','Name','Ticket','Cabin','Family','Surname','Survived')], 
                 method='rf') 

# Save the complete output
mice_output <-complete(mice_mod)

# Save age Distributions
par(mfrow=c(1,2))
hist(full$Age, freq = F, main = 'AgeOriginal Data', col = 'darkgreen', ylim=c(0,0.04))
hist(mice_output$Age, freq = F, main = 'Age : Mice output', col = 'ligthgreen', ylim=c(0,0.04))

# Replace Age variable from the mice model
full$Age <- mice_output$Age
sum(is.na(full$Age)) # na 값이 0인 것을 확인할 수 있다. 



## 
# feature engineering : round2

# 성별로 구분된 나이대별 생존자수 
ggplot(full[1:891,], aes(Age, fill=factor(Survived))) +
  geom_histogram() + 
  facet_grid(.~Sex) +
  theme_few()

# create the colum child, and indicate wheter child or adult
full$Child[full$Age < 18] <- 'Child'
full$Child[full$Age >=18] <- 'Adult'

# child survived 
table(full$Child, full$Survived)

# cheak NA 
md.pattern(full)

# 
## prediction 
train <- full[1:891,]
test <- full[892:1309,]

# Building  the model
set.seed(754)
rf_model <- randomForest(factor(Survived) ~ Pclass + Sex + Age + SibSp + Parch + 
                           Fare + Embarked + Title + 
                           FsizeD + Child,
                         data = train)

# Show model error
plot(rf_model, ylim=c(0,0.36))
legend('topright', colnames(rf_model$err.rate), col = 1:3, fill=1:3)

# Variable importance
# Get importance
importance <- importance(rf_model)
varImportance <- data.frame(Variable = row.names(importance), Importace=round(importance[,'MeanDecreaseGini'],2))

# Create a rank variable based on importance
rankImportance <- varImportance %>%
  mutate(Rank = paste0('#',dense_rank(desc(importance)))) # 변수 중요도 순위 메기기 

# 시각화 
# Use ggplot2 to visualize the relative importance of variables
ggplot(data)

# Use ggplot2 to visualize the relative importance of variables
ggplot(rankImportance, aes(x = reorder(Variable, Importace), 
                           y = Importace, fill = Importace)) +
  geom_bar(stat='identity') + 
  geom_text(aes(x = Variable, y = 0.5, label = Rank),
            hjust=0, vjust=0.55, size = 4, colour = 'red') +
  labs(x = 'Variable') +
  coord_flip() + 
  theme_few()

# 
# prediction 
prediction <- predict(rf_model, test)
table(prediction)
728x90
Comments